Basler raL4096-24gm # **Camera Specification** Measurement protocol using the EMVA Standard 1288 Document Number: BD000795 Version: 01 #### For customers in the U.S.A. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment. The shielded interface cable recommended in this manual must be used with this equipment in order to comply with the limits for a computing device pursuant to Subpart J of Part 15 of FCC Rules. #### For customers in Canada This apparatus complies with the Class A limits for radio noise emissions set out in Radio Interference Regulations. #### Pour utilisateurs au Canada Cet appareil est conforme aux normes Classe A pour bruits radioélectriques, spécifiées dans le Règlement sur le brouillage radioélectrique. #### **Life Support Applications** These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Basler customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Basler for any damages resulting from such improper use or sale. #### **Warranty Note** Do not open the housing of the camera. The warranty becomes void if the housing is opened. All material in this publication is subject to change without notice and is copyright Basler AG. ## **Contacting Basler Support Worldwide** ### **Europe:** Basler AG An der Strusbek 60 - 62 22926 Ahrensburg Germany Tel.: +49 4102 463 515 Fax.: +49 4102 463 599 support.europe@baslerweb.com #### Americas: Basler, Inc. 855 Springdale Drive, Suite 203 Exton, PA 19341 U.S.A. Tel.: +1 610 280 0171 Fax.: +1 610 280 7608 support.usa@baslerweb.com #### Asia: Basler Asia Pte. Ltd. 35 Marsiling Industrial Estate Road 3 # 05 - 06 Singapore 739257 Tel.: +65 6367 1355 Fax.: +65 6367 1255 support.asia@baslerweb.com www.baslerweb.com # **Contents** | 1 | Ove | rview | | 7 | |----|--------------------|---|---|--| | 2 | Intro | ductio | n | 8 | | 3 | Bas 3.1 | ic Infor
Illumin
3.1.1
3.1.2 | Illumination Setup for the Basler Camera Test Tool | | | 4 | 4.2
4.3 | Basic
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
Derive
4.2.1
4.2.2
4.2.3 | Total Quantum Efficiency Temporal Dark Noise Dark Current Doubling Temperature Inverse of Overall System Gain Inverse Photon Transfer Saturation Capacity d Data Absolute Sensitivity Threshold Signal-to-noise Ratio Dynamic Range Measurement Data Mean Gray Value Variance of the Temporal Distribution of Gray Values Light Induced Variance of the Temporal Distribution of Gray Values Light Induced Variance of the Temporal Distribution of Gray Values | 11
13
14
15
16
17
18
19
21
22
23
24
25
26
27 | | 5 | Cha 5.1 5.2 | Basic 5.1.1 5.1.2 | Spatial Offset Noise | 29
29
30
31
31
32 | | Bi | bliog | raphy | | 33 | # 1 Overview | Basler raL4096-24gm | | | | | | | | |--|----------------------------|---------------------|--------------------------------------|------------------------------|--|--|--| | Item | Symbol | Typ. ⁽¹⁾ | Unit | Remarks | | | | | Temporal Noise Parameters | | | | | | | | | Total Quantum Efficiency (QE) | $\mid \eta \mid$ | 43 ⁽²⁾ | % | $\lambda = 545\mathrm{nm}$ | | | | | Inverse of Overall System Gain | $\frac{1}{K}$ | 6.2 | $\frac{\mathrm{e^{-}}}{\mathrm{DN}}$ | | | | | | Temporal Dark Noise | σ_{d_0} | 9 | e ⁻ | | | | | | Saturation Capacity | $\mu_{e.\mathrm{sat}}$ | 25100 | e ⁻ | | | | | | Derived Parameters | | | | | | | | | Absolute Sensitivity Threshold | $\mu_{p. ext{min}}$ | 20 | p~ | $\lambda = 545 \mathrm{nm}$ | | | | | Dynamic Range | $DYN_{\mathrm{out.bit}}$ | 11.5 | bit | | | | | | Maximum SNR | $SNR_{y.\mathrm{max.bit}}$ | 7.3 | bit | | | | | | | $SNR_{y.\mathrm{max.dB}}$ | 44.0 | dB | | | | | | Item | Symbol | Тур. | Unit | Remarks | | | | | Spatial Noise Parameters | | | | | | | | | Spatial Offset Noise, DSNU ₁₂₈₈ | σ_o | 4.1 | e ⁻ | | | | | | Spatial Gain Noise, PRNU ₁₂₈₈ | S_g | 0.2 | % | | | | | Table 1: Most Important Specification Data | Operating Point | | | | | | | |---------------------|--------------|--|--|--|--|--| | Item Symbol Remarks | | | | | | | | Video output format | | 12 bits/pixel(Mono16) | | | | | | Gain | Register raw | 256 | | | | | | Offset | Register raw | 32 | | | | | | Exposure time | T_{exp} | $2.0\mu\mathrm{s}\ to\ 3.6\mathrm{ms}$ | | | | | Table 2: Operating Point for the Camera Used Basler raL4096-24gm 7 _ $^{^{}m (1)}$ The unit $\,e^-$ is used in this document as a statistically measured quantity. ⁽²⁾ See appendix "Deviation in Quantum Efficiency" and "Photo Response Non Uniformity". ## 2 Introduction This measurement protocol describes the specification of Basler raL4096-24gm cameras. The measurement methods conform to the 1288 EMVA Standard, the Standard for Characterization and Presentation of Specification Data for Image Sensors and Cameras (Release A1.03) of the European Machine Vision Association (EMVA) [1]. The most important specification data for Basler raL4096-24gm cameras is summarized in table 1. # 3 Basic Information | Basic Information | | | | | | |--|-----------------------|--|--|--|--| | Vendor | Basler | | | | | | Model | raL4096-24gm | | | | | | Type of data presented | Typical | | | | | | Number of samples | 100 | | | | | | Sensor | Awaiba DR-4k-7 Linear | | | | | | Sensor type | CMOS | | | | | | Sensor diagonal | | | | | | | Indication of lens category to be used | F-Mount | | | | | | Resolution | 4096 pixel | | | | | | Pixel width | 7.00 $\mu\mathrm{m}$ | | | | | | Pixel height | 7.00 $\mu { m m}$ | | | | | | Readout type | | | | | | | Transfer type | | | | | | | Shutter type | - | | | | | | Overlap capabilities | | | | | | | Maximum readout rate | 26.0 kHz | | | | | | General conventions | - | | | | | | Interface type | Gigabit Ethernet | | | | | Table 3: Basic Information #### 3.1 Illumination ### 3.1.1 Illumination Setup for the Basler Camera Test Tool The illumination during the testing on each camera was fixed. The drift in the illumination over a long period of time and after the lamp is changed is measured by a reference Basler A602fc camera. The reference camera provides an intensity factor that was used to calculate the irradiance for each camera measurement. | Light Source | | | | | | | | |---------------------------------|-----------------|------|------|------------------------|--|--|--| | Item | Symbol | Тур. | Unit | Remarks | | | | | Wavelength | λ | 545 | nm | | | | | | Wavelength Variation | $\Delta\lambda$ | 50 | nm | | | | | | Distance sensor to light source | d | 280 | mm | | | | | | Diameter of the light source | D | 35 | mm | | | | | | f-Number | $f_{\#}$ | 8 | | $f_{\#} = \frac{d}{D}$ | | | | Table 4: Light Source #### 3.1.2 Measurement of the Irradiance The irradiance was measured using an IL1700 Radiometer from International Light Inc. (Detector: SEL033 #6285; Input optic: W #9461; Filter: F #21487; regular calibration). The accuracy of the Radiometer is specified as $\pm 3.5\%$. The measured irradiance is plotted in figure 1. Figure 1: Irradiance for Each Camera Measurement The error for each calculated value using the amount of light falling on the sensor is dependent on the accuracy of the irradiance measurement. # 4 Characterizing Temporal Noise and Sensitivity ## 4.1 Basic Parameters # 4.1.1 Total Quantum Efficiency (3) Total Quantum Efficiency for One Fixed Wavelength Total quantum efficiency $\eta(\lambda)$ in [%] for monochrome light at $\lambda = 545\,\mathrm{nm}$ with a wavelength variation of $\Delta\lambda = 50\,\mathrm{nm}$. Figure 2: Total Quantum Efficiency (QE) | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |-------------------------------|--------|------|-----------|------|------------------------------| | Total Quantum Efficiency (QE) | η | 43 | TBD | % | $\lambda = 545 \mathrm{nm}$ | Table 5: Total Quantum Efficiency (QE) The main error in the total quantum efficiency $\Delta \eta$ is related to the error in the measurement of the illumination as described in section 3.1. Basler raL4096-24gm 11 (; See appendix "Deviation in Quantum Efficiency" and "Photo Response Non Uniformity". Total Quantum Efficiency Versus Wavelength of the Light Total quantum efficiency $\eta(\lambda)$ in [%] for monochrome light versus wavelength of the light in $[\mathrm{nm}]$. See appendix "Deviation in Quantum Efficiency" and "Photo Response Non Uniformity". ## 4.1.2 Temporal Dark Noise Standard deviation of the temporal dark noise σ_{d_0} referenced to electrons for exposure time zero in $[e^-]$. Figure 3: Temporal Dark Noise | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |---------------------|----------------|------|-----------|----------------|---------| | Temporal Dark Noise | σ_{d_0} | 9 | 0.3 | e ⁻ | | Table 6: Temporal Dark Noise ## 4.1.3 Dark Current Dark current N_{d30} for a housing temperature of $30^{\circ}\,\mathrm{C}$ in $\,[\mathrm{e^{-}/s}]$. Not measured! ## 4.1.4 Doubling Temperature Doubling temperature k_d of the dark current in $[^{\circ} C]$. Not measured! ## 4.1.5 Inverse of Overall System Gain Inverse of overall system gain $\frac{1}{K}$ in $[\,\frac{\mathrm{e}^-}{\mathrm{DN}}].$ Figure 4: Inverse of Overall System Gain | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |--------------------------------|---------------|------|-----------|----------------------|---------| | Inverse of Overall System Gain | $\frac{1}{K}$ | 6.2 | 0.27 | e ⁻
DN | | Table 7: Inverse of Overall System Gain #### 4.1.6 Inverse Photon Transfer Inverse photon transfer $\frac{1}{\eta K}$ in $\left[\frac{\mathbf{p}^{\sim}}{\mathrm{DN}}\right]$. Figure 5: Inverse Photon Transfer | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |-------------------------|--------------------|------|-----------|-----------------------|----------------------------| | Inverse Photon Transfer | $\frac{1}{\eta K}$ | 14.5 | TBD | $\frac{p^{\sim}}{DN}$ | $\lambda = 545\mathrm{nm}$ | Table 8: Inverse Photon Transfer The main error in the inverse photon transfer $\frac{1}{\eta K}$ is related to the error in the measurement of the illumination as described in section 3.1. ## 4.1.7 Saturation Capacity Saturation capacity $\mu_{e.\mathrm{sat}}$ referenced to electrons in $[\mathrm{\,e^-}]$. Figure 6: Saturation Capacity | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |---------------------|------------------------|-------|-----------|----------------|---------| | Saturation Capacity | $\mu_{e.\mathrm{sat}}$ | 25100 | 1210 | e ⁻ | | Table 9: Saturation Capacity ## 4.2 Derived Data ## 4.2.1 Absolute Sensitivity Threshold Absolute sensitivity threshold $\mu_{p.\min}(\lambda)$ in $[p^{\sim}]$ for monochrome light versus wavelength of the light in [nm]. $\mu_{p.min} = \frac{\sigma_{d_0}}{\eta} \tag{1}$ Figure 7: Absolute Sensitivity Threshold | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |--------------------------------|---------------------|------|-----------|------|----------------------------| | Absolute Sensitivity Threshold | $\mu_{p. ext{min}}$ | 20 | TBD | p~ | $\lambda = 545\mathrm{nm}$ | Table 10: Absolute Sensitivity Threshold ### 4.2.2 Signal-to-noise Ratio Signal-to-noise ratio $SNR_y(\mu_p)$ is plotted versus number of photons μ_p collected in a pixel during exposure time in $[p^{\sim}]$ for monochrome light with the wavelength λ given in [nm]. The wavelength should be near the maximum of the quantum efficiency. $$A: \mathsf{SNR}_y = \frac{\mu_y - \mu_{y.dark}}{\sigma_y} \tag{2}$$ $$B: \mathsf{SNR}_y = \frac{\eta \mu_p}{\sqrt{(\eta \mu_p + \sigma_{d_0}^2)}} \tag{3}$$ Figure 8 shows the signal-to-noise ratio ${\rm SNR}_y$ for monochrome light with the wavelength $\lambda=545\,{\rm nm}$. 'raL4096-24gm' (100 cameras), SNR Figure 8: Signal-to-noise Ratio The maximum achievable image quality is given as $SNR_{y.max}$. $$\mathsf{SNR}_{y.\mathrm{max}} = \sqrt{\mu_{e.\mathrm{sat}}} \tag{4}$$ $$SNR_{y.max.bit} = ld \ SNR_{y.max} = \frac{log \ SNR_{y.max}}{log \ 2}$$ (5) $$SNR_{y.max.dB} = 20 \log SNR_{y.max} \approx 6.02 SNR_{y.max.bit}$$ (6) Figure 9: Signal-to-noise Ratio | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |------------------------------|----------------------------|------|-----------|------|---------| | Maximum achievable SNR [bit] | $SNR_{y.\mathrm{max.bit}}$ | 7.3 | 0.03 | bit | | Table 11: Maximum achievable SNR [bit] | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |-----------------------------|---------------------------|------|-----------|------|---------| | Maximum achievable SNR [dB] | $SNR_{y.\mathrm{max.dB}}$ | 44.0 | 0.21 | dB | | Table 12: Maximum achievable SNR [dB] ## 4.2.3 Dynamic Range Dynamic range $DYN_{\mathrm{out.bit}}$ in [bit]. $$\mathsf{DYN}_{\mathrm{out}} = \frac{\mu_{e.\mathrm{sat}}}{\sigma_{d_0}} \tag{7}$$ $$\mathsf{DYN}_{\mathrm{out.bit}} = \log_2\left(\mathsf{DYN}_{\mathrm{out}}\right) \tag{8}$$ Figure 10: Output Dynamic Range | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |----------------------|--------------------------|------|-----------|------|---------| | Output Dynamic Range | $DYN_{\mathrm{out.bit}}$ | 11.5 | 0.09 | bit | | Table 13: Output Dynamic Range ## 4.3 Raw Measurement Data ## 4.3.1 Mean Gray Value Mean gray value $\mu_y(\mu_p)$ in $[\mathrm{DN}]$ is plotted versus number of photons μ_p in $[\mathrm{p}^\sim]$ collected in a pixel during exposure time. Figure 11: Mean Gray Values of the Cameras with Illuminated Pixels ### 4.3.2 Variance of the Temporal Distribution of Gray Values The variance of the temporal distribution of gray values $\sigma_{y.temp}^2(\mu_p)$ in $[\mathrm{DN^2}]$ is plotted versus number of photons μ_p in $[p^\sim]$ collected in a pixel during exposure time. Figure 12: Variance Values for the Temporal Distribution of Gray Values with Illuminated Pixels **Saturation Capacity** The saturation point is defined as the maximum of the curve in figure 12. The abscissa of the maximum point is the number of photons $\mu_{p.sat}$ where the camera saturates. The saturation capacity $\mu_{e.sat}$ in electrons is computed according to the mathematical model as: $$\mu_{e.sat} = \eta \mu_{p.sat} \tag{9}$$ ## 4.3.3 Mean of the Gray Values Dark Signal Mean of the gray values dark signal $\mu_{y.dark}(T_{exp})$ in [DN] is plotted versus exposure time in [s] . Figure 13: Mean Gray Values for the Cameras in Darkness ### 4.3.4 Variance of the Gray Value Temporal Distribution in Darkness The variance of the temporal distribution of gray values in darkness $\sigma_{y.temp.dark}^2(T_{exp})$ in $[\mathrm{DN^2}]$ is plotted versus exposure time T_{exp} in $[\mathrm{s}]$. Figure 14: Variance Values for the Temporal Distribution of Gray Values in Darkness **Temporal Dark Noise** The dark noise for exposure time zero is found as the offset of the linear correspondence in figure 14. Match a line (with offset) to the linear part of the data in the diagram. The dark noise for exposure time zero $\sigma_{d_0}^2$ is found as the offset of the line divided by the square of the overall system gain K. $$\sigma_{d_0} = \sqrt{\frac{\sigma_{y.temp.dark}^2(T_{exp} = 0)}{K^2}}$$ (10) ### 4.3.5 Light Induced Variance of the Temporal Distribution of Gray Values The light induced variance of the temporal distribution of gray values in $[\mathrm{DN^2}]$ is plotted versus light induced mean gray value in $[\mathrm{DN}]$. Figure 15: Light Induced Variance of the Temporal Distribution of Gray Values Versus Light Induced Mean Gray Value **Overall System Gain** The overall system gain K is computed according to the mathematical model as: $$K = \frac{\sigma_{y.temp}^2 - \sigma_{y.temp.dark}^2}{\mu_y - \mu_{y.dark}} \tag{11}$$ which describes the linear correspondence in figure 15. Match a line starting at the origin to the linear part of the data in this diagram. The slope of this line is the overall system gain K. ### 4.3.6 Light Induced Mean Gray Value The light induced mean gray value $\mu_y - \mu_{y.dark}$ in [DN] is plotted versus the number of photons collected in a pixel during exposure time $K\mu_p$ in [p]. Figure 16: Light Induced Mean Gray Value Versus the Number of Photons **Total Quantum Efficiency** The total quantum efficiency η is computed according to the mathematical model as: $$\eta = \frac{\mu_y - \mu_{y.dark}}{K\mu_p} \tag{12}$$ which describes the linear correspondence in figure 16. Match a line starting at the origin to the linear part of the data in this diagram. The slope of this line divided by the overall system gain K yields the total quantum efficiency η . The number of photons μ_p is calculated using the model for monochrome light. The number of photons Φ_p collected in the geometric pixel per unit exposure time $[p^{\sim}/s]$ is given by: $$\Phi_p = \frac{EA\lambda}{hc} \tag{13}$$ with the irradiance E on the sensor surface $[\mathrm{W/m^2}]$, the area A of the (geometrical) pixel $[\mathrm{m^2}]$, the wavelength λ of light $[\mathrm{m}]$, the Planck's constant $h\approx 6.63\cdot 10^{-34}\,\mathrm{Js}$, and the speed of light $c\approx 3\cdot 10^8\,\mathrm{m/s}$. The number of photons can be calculated by: $$\mu_p = \Phi_p T_{exp} \tag{14}$$ during the exposure time T_{exp} . Using equation 12 and the number of photons μ_p , the total quantum efficiency η can be calculated as: $$\eta = \frac{hc}{AT_{exp}} \frac{1}{E} \frac{1}{\lambda} \frac{\mu_p - \mu_{y.dark}}{K}. \tag{15}$$ ## 4.3.7 Dark Current Versus Housing Temperature The logarithm to the base 2 of the dark current in $\rm \, [e^-/s]\,$ versus deviation of the housing temperature from 30°C in $\rm \, [\, ^{\circ}\, C]$ Not measured! # 5 Characterizing Total and Spatial Noise ## 5.1 Basic Parameters ## 5.1.1 Spatial Offset Noise Standard deviation of the spatial offset noise σ_o referenced to electrons in $[e^-]$. Figure 17: Spatial Offset Noise (DSNU₁₂₈₈) | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |---|------------|------|-----------|---------|---------| | Spatial Offset Noise (DSNU ₁₂₈₈) | σ_o | 4.1 | 0.2 | e^{-} | | Table 14: Spatial Offset Noise (DSNU₁₂₈₈) # 5.1.2 Spatial Gain Noise (4) Standard deviation of the spatial gain noise S_g in [%]. Figure 18: Spatial Gain Noise ($PRNU_{1288}$) | Item | Symbol | Тур. | Std. Dev. | Unit | Remarks | |---|--------|------|-----------|------|---------| | Spatial Gain Noise (PRNU ₁₂₈₈) | S_g | 0.2 | 0.0 | % | | Table 15: Spatial Gain Noise ($PRNU_{1288}$) ⁽⁴⁾ See appendix "Deviation in Quantum Efficiency" and "Photo Response Non Uniformity". #### 5.2 Raw Measurement Data ## 5.2.1 Standard Deviation of the Spatial Dark Noise Standard deviation of the spatial dark noise in $[\mathrm{DN}]$ versus exposure time in $[\mathrm{s}]$. Figure 19: Standard Deviation of the Spatial Dark Noise From the mathematical model, it follows that the **variance of the spatial offset noise** σ_o^2 should be constant and not dependent on the exposure time. Check that the data in the figure 19 forms a flat line. Compute the mean of the values in the diagram. The mean divided by the conversion gain K gives the standard deviation of the spatial offset noise σ_o . $$\mathsf{DSNU}_{1288} = \sigma_o = \frac{\sigma_{y.spat.dark}}{K} \tag{16}$$ The square of the result equals the variance of the spatial offset noise σ_o^2 . ### 5.2.2 Light Induced Standard Deviation of the Spatial Noise Light induced standard deviation of the spatial noise in $\,[\mathrm{DN}]\,$ versus light induced mean of gray values $\,[\mathrm{DN}]\,$. Figure 20: Light Induced Standard Deviation of the Spatial Noise The variance coefficient of the spatial gain noise S_g^2 or its standard deviation value S_g respectively, is computed according to the mathematical model as: $$\mathsf{PRNU}_{1288} = S_g = \frac{\sqrt{\sigma_{y.spat}^2 - \sigma_{y.spat.dark}^2}}{\mu_y - \mu_{y.dark}},\tag{17}$$ which describes the linear correspondence in figure 20. Match a line through the origin to the linear part of the data. The line's slope equals the standard deviation value of the spatial gain noise $\,S_g$. # References [1] EUROPEAN MACHINE VISION ASSOCIATION (EMVA): EMVA Standard 1288 - Standard for Characterization and Presentation of Specification Data for Image Sensors and Cameras (Release A1.03). 2006 To whom it may concern Ahrensburg, October 02, 2013 phone: +49 4102 463 484 fax: +49 4102 46 484 marc.nehmke@baslerweb.com #### **Appendix** Measurement protocol - Basler racer Camera Series - 1) Deviation in Quantum Efficiency - 2) Photo Response Non Uniformity Dear Sir or Madam, Please note that the current EMVA Standard 1288 camera calculation model does not fit exactly the most recent technological advance as e.g. realized in the latest CMOS sensors. The quantum efficiency information given in this camera measurement protocol was calculated assuming the current EMVA Standard 1288 regulations. However, the quantum efficiency information (see below) reported by the sensor manufacturer for the sensors used in the Basler racer camera series differs from the quantum efficiency information given in this camera specification. Fig. 1: Quantum Efficiency of the Monochrome Sensor in 12 Bit Depth Mode Furthermore, please note that the Photo Response Non Uniformity (PRNU) information given in this report refers to the use of shading compensation for a specific operating point. Independent evaluations of series cameras using the cameras default shading settings confirmed a PRNU of 0.5% on average. Best regards Marc Oliver Nehmke, Product Manager U.O. Nehmbe